skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Vafaee, Reza"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This study addresses the challenge of selecting sensors for linear time-varying (LTV) systems dynamically. We present a framework that designs an online sparse sensor schedule with performance guarantees using randomized algorithms for large-scale LTV systems. Our approach calculates each sensor’s contribution at each time in real-time and immediately decides whether to keep or discard the sensor in the schedule, with no possibility of reversal. Additionally, we provide new performance guarantees that approximate the fully-sensed LTV system with a multiplicative approximation factor and an additive one by using a constant average number of active sensors at each time. We demonstrate the validity of our findings through several numerical examples. 
    more » « less
  2. In this paper, we consider the problem of sensor selection for discrete-time linear dynamical networks. We develop a framework to design a sparse sensor schedule for a given large-scale linear system with guaranteed performance bounds using a learning-based algorithm. To sparsify the sensors in both time and space, we build our combinatorial optimization problems based on the notion of systemic controllability/observability metrics for linear dynamical networks with three properties: monotonicity, convexity, and homogeneity with respect to the controllability/observability Gramian matrix of the network. These combinatorial optimizations are inherently intractable and NP-hard. However, solving a continuous relaxation for each optimization is considered best practice. This is achievable since we constructed the objective based on the systemic metrics, which are convex. Furthermore, by leveraging recent advances in sparsification literature and regret minimization, we then round the fractional solution obtained by the continuous optimization to achieve a (1+epsilon) approximation sparse schedule that chooses on average a constant number of sensors at each time, to approximate all types of systemic metrics. 
    more » « less